Source code for pyepal.pal.pal_botorch

# -*- coding: utf-8 -*-
# Copyright 2022 PyePAL authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import torch
from botorch.fit import fit_gpytorch_model
from sklearn.preprocessing import PowerTransformer

from .pal_base import PALBase
from .schedules import linear
from .validate_inputs import validate_njobs, validate_number_models

__all__ = ["PALBoTorch", "PALMultiTaskBoTorch"]


[docs]class PALBoTorch(PALBase): """PAL class for a list of BoTorch (GPR) models, with one model per objective"""
[docs] def __init__(self, *args, **kwargs): """Contruct the PALBoTorch instance Args: X_design (np.array): Design space (feature matrix) model_functions (list): Functions that when called with `x`, `y`, and optionally `old_state_dict` return a model and a likelihood. We need to this due to problems with re-training warm-started models in BOtorch (https://github.com/pytorch/botorch/issues/533). ndim (int): Number of objectives epsilon (Union[list, float], optional): Epsilon hyperparameter. Defaults to 0.01. delta (float, optional): Delta hyperparameter. Defaults to 0.05. beta_scale (float, optional): Scaling parameter for beta. If not equal to 1, the theoretical guarantees do not necessarily hold. Also note that the parametrization depends on the kernel type. Defaults to 1/9. goals (List[str], optional): If a list, provide "min" for every objective that shall be minimized and "max" for every objective that shall be maximized. Defaults to None, which means that the code maximizes all objectives. coef_var_threshold (float, optional): Use only points with a coefficient of variation below this threshold in the classification step. Defaults to 3. restarts (int): Number of random restarts that are used for hyperparameter optimization. Defaults to 20. n_jobs (int): Number of parallel processes that are used to fit the GPR models. Defaults to 1. power_transformer (bool): If True, use Yeo-Johnson transform on the inputs. Defaults to True. add_observation_noise (bool): If True, add observation noise to predicted uncertainties. Defaults to False """ # todo: not nice that we have to provide the model functions as keyword arguments power_transformer = kwargs.pop("power_transformer", True) self.model_functions = kwargs.pop("model_functions", None) self.n_jobs = validate_njobs(kwargs.pop("n_jobs", 1)) self.add_observation_noise = kwargs.pop("add_observation_noise", False) self.warm_start = kwargs.pop("warm_start", False) super().__init__(*args, **kwargs, models=[None]) self.models = [None] * self.ndim self.power_transformer = ( [PowerTransformer() for _ in range(self.ndim)] if power_transformer else None ) validate_number_models(self.models, self.ndim)
def _set_data(self): for i, model_generator in enumerate(self.model_functions): if self.warm_start and self.iteration > 1: old_state_dict = self.models[i][0].state_dict() else: old_state_dict = None y = self.y[self.sampled[:, i], i].reshape(-1, 1) if self.power_transformer is not None: y = self.power_transformer[i].fit_transform(y) self.models[i] = model_generator( self.design_space[self.sampled[:, i]], y, old_state_dict ) def _train(self): pass # There is no training in instance based models def _predict(self): means, stds = [], [] for i, model in enumerate(self.models): posterior = model[0].posterior( torch.tensor(self.design_space), observation_noise=self.add_observation_noise ) mean = posterior.mean.detach().numpy() std = posterior.variance.detach().numpy() mean = mean.reshape(-1, 1) std = std.reshape(-1, 1) if self.power_transformer is not None: mean = self.power_transformer[i].inverse_transform(mean) std = self.power_transformer[i].inverse_transform(std) means.append(mean) stds.append(np.sqrt(std)) self._means = np.hstack(means) self.std = np.hstack(stds) def _set_hyperparameters(self): # with concurrent.futures.ProcessPoolExecutor(max_workers=self.n_jobs) as executor: # ToDo: parallelize for m in self.models: fit_gpytorch_model(m[1]) # the fit function doesn't return anything, the state of the object is updated... def _should_optimize_hyperparameters(self) -> bool: return linear(self.iteration, 10)
[docs]class PALMultiTaskBoTorch(PALBase): """PAL class for a multioutput BoTorch model"""
[docs] def __init__(self, *args, **kwargs): """Contruct the PALBoTorch instance Args: X_design (np.array): Design space (feature matrix) model_functions (list): Function that when called with `x`, `y`, and optionally `old_state_dict` returns a model and a likelihood. We need to this due to problems with re-training warm-started models in BOtorch (https://github.com/pytorch/botorch/issues/533). ndim (int): Number of objectives epsilon (Union[list, float], optional): Epsilon hyperparameter. Defaults to 0.01. delta (float, optional): Delta hyperparameter. Defaults to 0.05. beta_scale (float, optional): Scaling parameter for beta. If not equal to 1, the theoretical guarantees do not necessarily hold. Also note that the parametrization depends on the kernel type. Defaults to 1/9. goals (List[str], optional): If a list, provide "min" for every objective that shall be minimized and "max" for every objective that shall be maximized. Defaults to None, which means that the code maximizes all objectives. coef_var_threshold (float, optional): Use only points with a coefficient of variation below this threshold in the classification step. Defaults to 3. restarts (int): Number of random restarts that are used for hyperparameter optimization. Defaults to 20. n_jobs (int): Number of parallel processes that are used to fit the GPR models. Defaults to 1. power_transformer (bool): If True, use Yeo-Johnson transform on the inputs. Defaults to True. """ # todo: not nice that we have to provide the model functions as keyword arguments power_transformer = kwargs.pop("power_transformer", True) self.model_functions = kwargs.pop("model_functions", None) self.n_jobs = validate_njobs(kwargs.pop("n_jobs", 1)) self.warm_start = kwargs.pop("warm_start", False) super().__init__(*args, **kwargs, models=[None]) self.models = [None] self.power_transformer = PowerTransformer() if power_transformer else None
def _set_data(self): model_generator = self.model_functions[0] if self.warm_start and self.iteration > 1: old_state_dict = self.models[0][0].state_dict() else: old_state_dict = None y = self.y[self.sampled_indices] if self.power_transformer is not None: y = self.power_transformer.fit_transform(y) self.models[0] = model_generator(self.design_space[self.sampled_indices], y, old_state_dict) def _train(self): pass # There is no training in instance based models def _predict(self): means, stds = [], [] posterior = self.models[0][0].posterior(torch.tensor(self.design_space)) mean = posterior.mean.detach().numpy() std = posterior.variance.detach().numpy() if self.power_transformer is not None: mean = self.power_transformer.inverse_transform(mean) std = self.power_transformer.inverse_transform(std) means.append(mean) stds.append(np.sqrt(std)) self._means = np.hstack(means) self.std = np.hstack(stds) def _set_hyperparameters(self): # ToDo: parallelize # with concurrent.futures.ProcessPoolExecutor(max_workers=self.n_jobs) as executor: for m in self.models: fit_gpytorch_model(m[1]) # the fit function doesn't return anything, the state of the object is updated... def _should_optimize_hyperparameters(self) -> bool: return linear(self.iteration, 10)