Source code for pyepal.pal.pal_coregionalized

# -*- coding: utf-8 -*-
# Copyright 2022 PyePAL authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


"""PAL for coregionalized GPR models"""

import numpy as np
from sklearn.preprocessing import PowerTransformer

from .pal_base import PALBase
from .schedules import linear

__all__ = ["PALCoregionalized"]


[docs]class PALCoregionalized(PALBase): """PAL class for a coregionalized GPR model"""
[docs] def __init__(self, *args, **kwargs): """Construct the PALCoregionalized instance Args: X_design (np.array): Design space (feature matrix) models (list): Machine learning models ndim (int): Number of objectives epsilon (Union[list, float], optional): Epsilon hyperparameter. Defaults to 0.01. delta (float, optional): Delta hyperparameter. Defaults to 0.05. beta_scale (float, optional): Scaling parameter for beta. If not equal to 1, the theoretical guarantees do not necessarily hold. Also note that the parametrization depends on the kernel type. Defaults to 1/9. goals (List[str], optional): If a list, provide "min" for every objective that shall be minimized and "max" for every objective that shall be maximized. Defaults to None, which means that the code maximizes all objectives. coef_var_threshold (float, optional): Use only points with a coefficient of variation below this threshold in the classification step. Defaults to 3. restarts (int): Number of random restarts that are used for hyperparameter optimization. Defaults to 20. parallel (bool): If true, model hyperparameters are optimized in parallel, using the GPy implementation. Defaults to False. power_transformer (bool): If True, use Yeo-Johnson transform on the inputs. Defaults to False. """ from .validate_inputs import ( # pylint:disable=import-outside-toplevel validate_coregionalized_gpy, ) self.restarts = kwargs.pop("restarts", 20) self.parallel = kwargs.pop("parallel", False) power_transformer = kwargs.pop("power_transformer", False) assert isinstance(self.parallel, bool), "the parallel keyword must be of type bool" assert isinstance(self.restarts, int), "the restarts keyword must be of type int" super().__init__(*args, **kwargs) validate_coregionalized_gpy(self.models) self.power_transformer = PowerTransformer() if power_transformer else None
def _set_data(self): from ..models.gpr import set_xy_coregionalized # pylint:disable=import-outside-toplevel y = self.y[self.sampled_indices] if self.power_transformer is not None: y = self.power_transformer.fit_transform(y) self.models[0] = set_xy_coregionalized( self.models[0], self.design_space[self.sampled_indices], y, self.sampled[self.sampled_indices], ) def _train(self): pass def _predict(self): from ..models.gpr import predict_coregionalized # pylint:disable=import-outside-toplevel means, stds = [], [] for i in range(self.ndim): mean, std = predict_coregionalized(self.models[0], self.design_space, i) means.append(mean.reshape(-1, 1)) stds.append(std.reshape(-1, 1)) _means = np.hstack(means) _std = np.hstack(stds) if self.power_transformer is not None: _means = self.power_transformer.inverse_transform(_means) _std = self.power_transformer.inverse_transform(_std) self._means = _means self.std = _std def _set_hyperparameters(self): self.models[0].optimize_restarts(self.restarts, parallel=self.parallel) def _should_optimize_hyperparameters(self) -> bool: return linear(self.iteration, 10)